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Problem

• Accurate modeling of the propagation of a 
disease epidemic

• Accurate models essential for mitigating 
bioterrorist attacks

• Accurate portrayal of the disease propagation 
necessary to formulate an effective response

• Larger problem of diffusion
– Similar to many other social diffusive problems
– Diffusion of ideas, rumors, financial panic, etc.

• Two main types of models of epidemics
– Differential equation (DE) 
– Agent-based (AB)



4

Problem

• Goal is to determine best response to an 
epidemic
– Mass vaccination
– Targeted vaccination
– Quarantine

• Focus on smallpox
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Smallpox

• Acute, highly contagious viral disease 
• 3 stages (or 4)

– Incubation
– Prodromal
– Pox

• No consensus on parameters of disease model
• Eradicated in 1979 by World Health 

Organization campaign
– Mass vaccination somewhat effective but did not 

entirely eradicate the disease
– Traced vaccination strategy successfully 

eradicated the disease
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Smallpox

• Concern that smallpox could be used in a 
terrorist attack

• U.S. government has stockpiled 300 million 
vaccines for smallpox 

• 2002 CDC response
– Based on previous W.H.O. successful scheme
– Traced vaccination and quarantine of symptomatic 

smallpox cases
– More massive vaccination if cases does not drop off 

after two or three generations
• Is this the best response?
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Differential Equation vs. Agent-based Models

Differential Equation
• Highly aggregate
• Broad boundary
• Perfect mixing 

assumption
• Few number of 

parameters
• Computationally 

reasonable
• Continuous time

Agent-based
• Highly disaggregate
• Narrow boundary
• Heterogeneity in 

agent attributes
• Large number of 

parameters
• Computationally 

intensive
• Discrete time
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Spectrum of Model Characteristics

• DE and AB models generally thought in terms 
of previous listed characteristics 

• However, the models often contain 
characteristics of both

• Aggregation
– Disaggregate DE models with many components
– Aggregate AB models with agents representing 

multiple people
• DE models can “mimic” heterogeneity by 

setting parameters in a certain manner (e.g., 
transmission rate)

• DE/AB hybrid models possible
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DE Models of Epidemics

• Usually highly aggregate
• Model large populations easily
• Often result in systems of nonlinear equations 

that must be solved numerically
• In general, most appropriate when a wide 

range of feedback is necessary
• In general, less ideal than AB when social 

interaction network important to model
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SEIR Model

• Simple, lumped nonlinear DE model
• All members belong to four basic states
• Several simplifying assumptions

– Perfect mixing/homogeneity within each state
– Mean field aggregation
– …

• Applied to successfully model many diseases
• Additional states often included

– More complex disease life-cycles
– Add more heterogeity
– Birth, death
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States of SEIR Model

• Susceptible (S)
– Unexposed portion of the population
– Has not entered E, I, or R states

• Exposed (E)
– Contagious
– Not symptomatic

• Infected (I)
– Contagious
– Symptomatic

• Recovered/Dead (R)
– Recovered assumed to have everlasting immunity
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States of SEIR Model
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Infection Rate (IR)

S EIR

( )
N
SIicEicIR ISISESES +=

cES – contact frequency between E, S
iES – infectivity of state E
E – number of people in state E
N – population size

• Rate at which new cases of the disease are 
generated by contact with E and I 
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Emergence Rate (ER)

E IER

• Rate at which asymptomatic, exposed 
individuals become symptomatic

ε
EER =

E – number of people in state E
– incubation timeε
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Recovery Rate (RR)

I RRR

• Rate at which symptomatic individuals 
recover or die

I – number of people in state I
– duration of diseaseδ

δ
IRR =
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SEIR: System of Differential Equations
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DE Model Example: Kaplan, et al.

• SEIRlike model by Kaplan, et al.                     
(4 disease stages)
– Asymptomatic, noninfectious, vaccine sensitive
– Asymptomatic, noninfectious, vaccine insensitive
– Asymptomatic, infectious
– Symptomatic, isolated

• Modeled smallpox epidemic and response
– Mass vaccination
– Traced vaccination

• Additional States 
– Death
– Queues, etc.
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Kaplan, et al.: Perfect Mixing

• As with SEIR model, assumes perfect mixing 
within states

• Recognize not accurate model of population 
interaction

• Claim perfect mixing leads to larger epidemics 
than nonrandom mixing

• Argue control strategy needs to handle this 
worst case

• Strategies that work in worst case should 
work in best
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Kaplan, et al.: Results

Mass Targeted 
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Kaplan, et al.: Results
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Kaplan, et al.: Conclusions

• Mass vaccination preferable to traced 
vaccination
– Fewer deaths
– Shorter life of epidemic

• CDC policy of traced vaccination, switching to 
mass vaccination when necessary costly

• CDC should use mass vaccination immediately 
as a response to smallpox attack in urban 
areas instead of traced vaccination
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Agent-based Epidemic Models

• Usually highly disaggregate
• Expensive computationally

– Hard to model large populations
– Hard to do sensitivity analysis

• Many parameters obtained from distributions
• Most appropriate when epidemic depend greatly 

on heterogeneity and stochastic events
• More ideal than DE Models when social 

interaction network important 
• Social networks extremely important to AB

– Model people’s interactions
– Model flow of people through locations
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Basic Social Network Models

• Fully connected (Uniform)
– Probability of interaction the same for any 2 pairs

• Random
– Connections between individuals randomly chosen

• Lattice
– Connections only through nearest neighbors

• Small-world
– Most connections local, a few long-range 

• Scale-free
– Some nodes highly connected, most sparsely 

connected
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Networks
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Fully Connected (Uniform)
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Random Network
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Lattice Network
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Small-world Network
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Scale-free Networks
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AB Example: EpiSims

• Agent-based model by Stephen Eubank, et al. 
(2004)

• Models smallpox epidemic in urban areas
• Utilizes realistic urban social network 

– Network data obtained from Los Alamos 
TRANSIMS

• Realistic estimates of population mobility
• Census, land-use data
• Comprehensive data Portland, Oregon

– Based on assumption that transportation 
infrastructure shapes population mobility
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AB Example: EpiSims

• TRANSIMS creates a representative 
artificial population based on census data

• TRANSIMS then generates a second-by-
second list of the positions of the population

• EpiSims produces dynamic graphs for the 
social network from this data

• Bi-partite graphs with two types of vertices
– People vertices
– Location vertices
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EpiSims: Bipartite Graph

P1

P2

P3

P4

L1

L2

L3

8:00-11:00

8:00-9:00

10:00-11:00

9:00-10:008:00-11:00

10:00-11:00

• Portland
• 1.5 million people 

vertices
• 180,00 location 

vertices
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EpiSims: Population Contact Graphs
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EpiSims: Travel Projection Graphs
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EpiSims: Static Projections
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• Worst-case 
scenario
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EpiSims: Graph Properties

• Analysis of social network graphs show several 
important properties

• Population contact graphs exhibit small-world 
like properties
– Highly clustered, connected groups of people
– A few long range “travelers”
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EpiSims: Graph Properties

• Population contact graph vertices are highly 
connected (not scale-free)
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EpiSims: Graph Properties

• Location graph is scale-free
– A few locations (“hubs”) with many connections
– Majority of locations have relatively few connections
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EpiSims: Containment Strategies from Graphs

• The graph properties give intuition  into 
effective containment strategies
– Alternatives to mass vaccination

• Overall high connectivity of people contact 
graphs
– Cannot target social people for vaccination
– Would not reduce overall connectivity of graph
– Would not greatly increase graph diameter
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EpiSims: Containment Strategies from Graphs

• Small-world property of people contact graphs
– Vaccinating long distance travelers crucial
– Eliminates small-world property
– Increases everybody’s “degree of separation”
– Slows spread of disease

• Scale-free property of location graphs
– Closing “hubs” might be effective
– Eubank, et al. argue maybe not

• Showed did not greatly effect the largest connected 
component in people contact graph

• Removed locations of over 100 degrees to see improvement
– Perhaps still graph diameter would increase and 

epidemic slowed
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EpiSims: Vaccination Strategies

• Compared four vaccination strategies
– No vaccination
– Mass vaccination
– Targeted vaccination

• Traced vaccination
• Vaccination of “travelers”

– Limited targeted vaccination
• Varied Response Time

– 10-day delay
– 7-day delay
– 4-day delay

• Varied Withdrawal Time
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EpiSims Results: Vaccination Strategies

* - 10 day delay
X - 7 day delay
+ - 4 day delay
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EpiSims: Discussion/Conclusions

• Early withdrawal most important
• Quick response time second most important
• Type of vaccination least important (assuming 

some vaccination)
• Targeted vaccination as effective as mass 

vaccination
• Limited targeted vaccination almost as 

effective as other two methods  
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Overall Conclusions

• Much is unknown about the spread of diseases 
such as smallpox

• Two different models (one DE, one AB) 
provide different conclusions about the best 
vaccination scheme

• Unclear which model is better
• Difficult to validate that we are actually 

modeling the spread of smallpox
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Overall Conclusions

• AB model provides more insight into social 
interaction aspects and better intuition into 
potential containment strategies

• DE model is cheaper
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Overall Conclusions

• So what vaccination strategy is better?
• Mass vaccination

– Be safe and vaccinate everybody
– Smallpox vaccination is somewhat dangerous
– Can transmit virus to others
– Vaccinating people unnecessarily is not a good idea

• Targeted vaccination
– Better if effective
– Risk losing control of epidemic 
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